IL-6:炎癥級(jí)聯(lián)反應(yīng)重要參與者,功能最多、影響最廣泛的炎癥細(xì)胞因子之一!
日期:2024-04-11 09:59:36
2024年2月22日,Cell Reports雜志刊登了題為“Structural insights into IL-6 signaling inhibition by therapeutic antibodies”的文章,揭示了針對(duì)IL-6的抗體抑制劑Tocilizumab和Sarilumab,通過(guò)阻斷IL-6信號(hào)通路來(lái),治療風(fēng)濕性關(guān)節(jié)炎、細(xì)胞因子風(fēng)暴和COVID-19肺炎等疾病的臨床應(yīng)用前景 [1]。IL-6是一種單鏈糖蛋白細(xì)胞因子,由多種細(xì)胞產(chǎn)生,具有廣泛的生物學(xué)活性功能。大量的研究證實(shí),IL-6在調(diào)節(jié)系統(tǒng)性炎癥反應(yīng)綜合征、慢性自身免疫性疾病以及腫瘤發(fā)展等方面發(fā)揮著關(guān)鍵作用。目前,IL-6作為炎癥級(jí)聯(lián)反應(yīng)重要參與者,是功能最多、影響最廣泛的炎癥細(xì)胞因子之一,正成為藥物研發(fā)的重要靶點(diǎn)!
1. 什么是IL-6?
1.1 IL-6的結(jié)構(gòu)
白細(xì)胞介素-6(Interleukin-6,IL-6)是最早被發(fā)現(xiàn)的IL-6家族原型成員,其最初被確定為B細(xì)胞刺激因子-2(BSF-2)。IL-6分子量約為26 kDa,屬于磷酸化糖蛋白。人IL-6由212個(gè)氨基酸組成,其中包括28個(gè)氨基酸組成的信號(hào)肽序列,其基因定位于第7號(hào)染色體。IL-6的結(jié)構(gòu)包含四個(gè)螺旋束,它們以“上-上-下-下”的拓?fù)浣Y(jié)構(gòu)排列,并且具有三個(gè)環(huán)狀結(jié)構(gòu)(兩個(gè)較長(zhǎng)的環(huán),分別為A-B環(huán)和C-D環(huán),以及一個(gè)較短的B-C環(huán))。IL-6家族細(xì)胞因子包括IL-6、IL-11、IL-27、OSM、LIF、CNTF、CT1、CLCF1、IL-35、IL-39等10個(gè)成員。這些成員雖然在序列上并不相同,但它們都基于了共同的受體亞單位,即受體膜糖蛋白130(GP130),再通過(guò)與其配體結(jié)合,實(shí)現(xiàn)信號(hào)傳導(dǎo) [1-7]。
圖1. IL-6的結(jié)構(gòu) [3]
1.2 IL-6的表達(dá)和功能
IL-6是一種由免疫系統(tǒng)中多種細(xì)胞分泌的重要細(xì)胞因子,包括巨噬細(xì)胞和被感染的T細(xì)胞等。除了巨噬細(xì)胞外,還有許多其他細(xì)胞類(lèi)型也能產(chǎn)生IL-6,如腸細(xì)胞、肝細(xì)胞、肺細(xì)胞等。IL-6在維持機(jī)體穩(wěn)態(tài)中起著重要作用。當(dāng)體內(nèi)因感染或組織損傷而打破穩(wěn)態(tài)時(shí),IL-6會(huì)立即產(chǎn)生并通過(guò)對(duì)急性期反應(yīng)和免疫應(yīng)答的激活來(lái)對(duì)抗這些緊急壓力,從而有助于宿主防御。然而,IL-6過(guò)度合成及持續(xù)表達(dá)失調(diào)會(huì)導(dǎo)致病理性影響,包括急性期蛋白的產(chǎn)生、炎癥反應(yīng)、免疫反應(yīng)、宿主防御和造血等等。自從IL-6被發(fā)現(xiàn)以來(lái),研究人員發(fā)現(xiàn),IL-6可以與多種疾病密切關(guān)聯(lián)的現(xiàn)象,比如應(yīng)激、肺炎、免疫、心血管以及腫瘤等 [1-7]。
2. IL-6的受體是什么?
IL-6結(jié)合沒(méi)有信號(hào)傳導(dǎo)能力的IL-6受體(IL-6R/IL-6Rα,也稱為CD126),進(jìn)而結(jié)合第二個(gè)受體亞基130(GP130),形成了一個(gè)六聚體復(fù)合物,由2個(gè)配體分子、2個(gè)α亞基分子和2個(gè)β130分子組成。IL-6的受體有兩種類(lèi)型(IL-6R和sIL-6R),它們分別啟動(dòng)不同的信號(hào)轉(zhuǎn)導(dǎo)通路:膜受體啟動(dòng)經(jīng)典信號(hào)途徑;可溶性受體則啟動(dòng)反式信號(hào)。兩種類(lèi)型都需要GP130的參與。盡管GP130在細(xì)胞中廣泛表達(dá),但I(xiàn)L-6受體/IL-6R僅存在于特定的細(xì)胞上,例如肝細(xì)胞、中性粒細(xì)胞、單核細(xì)胞、巨噬細(xì)胞以及T和B淋巴細(xì)胞等??扇苄訧L-6R通過(guò)與IL-6形成復(fù)合物,這一過(guò)程介導(dǎo)了IL-6在表面僅含有GP130的多種細(xì)胞(如神經(jīng)細(xì)胞、平滑肌細(xì)胞和內(nèi)皮細(xì)胞)中的信號(hào)傳導(dǎo) [8-10]。
3. IL-6相關(guān)的信號(hào)機(jī)制
IL-6通過(guò)其獨(dú)特的受體系統(tǒng)傳遞信號(hào)。它與IL-6R/IL-6Ra結(jié)合蛋白和信號(hào)轉(zhuǎn)導(dǎo)組分糖蛋白130(CD130)組成的細(xì)胞表面I型受體復(fù)合物相互作用。該復(fù)合物IL-6/IL-6R/GP130激活JAK/STAT3、PI3K/AKT/mTOR、RAS/RAF/MEK/ERK、YAP、SHP2/RAS/MAPK等信號(hào)通路的激活,也被稱為IL-6的經(jīng)典信號(hào)轉(zhuǎn)導(dǎo) [11]。
3.1 IL-6的經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)
在IL-6經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)中,關(guān)鍵蛋白包括Janus激酶(JAK)、STAT3以及Ras蛋白。IL-6激活JAK和STAT3,導(dǎo)致STAT3磷酸化并形成二聚體,隨后進(jìn)入細(xì)胞核調(diào)節(jié)基因表達(dá),促進(jìn)細(xì)胞生長(zhǎng)、分化和存活。此外,IL-6也激活Ras蛋白,進(jìn)而增加MAPK活性,促進(jìn)轉(zhuǎn)錄因子活性,參與細(xì)胞生長(zhǎng)、免疫球蛋白合成等過(guò)程。另外,IL-6通過(guò)激活PI3K/PKB/Akt途徑調(diào)節(jié)信號(hào)傳導(dǎo),影響細(xì)胞的生理活性 [10-11]。在未經(jīng)刺激的CD4?T細(xì)胞中,IL-6能夠激活STAT3,進(jìn)而誘導(dǎo)STAT3及其靶基因的轉(zhuǎn)錄,其中包括Arid5a,它保護(hù)STAT3 mRNA免受Regnase-1介導(dǎo)的降解作用。Arid5a對(duì)IL-6和STAT3 mRNA的調(diào)控對(duì)于IL-6的生成以及由IL-6受體介導(dǎo)的信號(hào)強(qiáng)度至關(guān)重要 [12]。
3.2 IL-6的反式信號(hào)傳導(dǎo)
IL-6僅與IL-6R結(jié)合,而不與GP130結(jié)合,因此IL-6R未表達(dá)的細(xì)胞對(duì)IL-6沒(méi)有反應(yīng)。然而,膜結(jié)合的IL-6R可以被蛋白水解酶切割,釋放出與IL-6相互作用的可溶性IL-6R(sIL-6R),其主要的酶是ADAM17和ADAM10。因?yàn)镚P130廣泛表達(dá),這種sIL-6R的生成擴(kuò)展了IL-6的作用范圍。sIL-6R結(jié)合GP130而不需要IL-6R的細(xì)胞進(jìn)行信號(hào)傳導(dǎo),這稱為IL-6的反式信號(hào)傳導(dǎo)。因此,IL-6的不同作用途徑調(diào)節(jié)著不同的生物效應(yīng),包括控制白細(xì)胞招募和腫瘤相關(guān)的炎性反應(yīng),在急性期免疫反應(yīng)、造血功能和中樞平衡過(guò)程中起重要作用 [11]。
3.3 IL-6的其它信號(hào)轉(zhuǎn)導(dǎo)
在正常細(xì)胞中,IL-6的產(chǎn)生受到不同信號(hào)的調(diào)節(jié),如IL-1、TNF、IFNs、DNA病毒、RNA病毒和細(xì)菌內(nèi)毒素等 [13]。在急性炎癥中,單核細(xì)胞和巨噬細(xì)胞通過(guò)TLR激活I(lǐng)L-6的產(chǎn)生,而在慢性炎癥中,T細(xì)胞是IL-6主要來(lái)源之一。研究表明,多聚核苷酸Poly I:C能激活TLR3,從而誘導(dǎo)IL-6自我釋放,并通過(guò)STAT3磷酸化調(diào)節(jié)TLR2表達(dá)量 [14]??傊?,IL-6在生理和病理過(guò)程中扮演復(fù)雜角色,針對(duì)性地阻斷IL-6及其信號(hào)通路已成為治療多種疾病研究的有效策略。
圖2. IL-6相關(guān)的信號(hào)機(jī)制 [11]
4. IL-6和疾病相關(guān)的研究
4.1 IL-6和炎癥研究
4.1.1 IL-6在急性炎癥中的研究
在炎癥早期,IL-6的合成和釋放是機(jī)體應(yīng)對(duì)損傷或感染的重要反應(yīng)之一。IL-6可以迅速被激活并釋放到局部組織,隨后通過(guò)血液循環(huán)迅速傳播到全身各個(gè)部位。在肝臟中,IL-6的產(chǎn)生可引發(fā)一系列生物學(xué)反應(yīng),其中包括急性期蛋白的合成,其中包括CRP、SAA和纖維蛋白原等。這些急性期蛋白的產(chǎn)生是機(jī)體對(duì)抗感染和修復(fù)組織損傷的關(guān)鍵步驟,它們不僅參與了免疫反應(yīng)的調(diào)節(jié),還有助于抵御病原體的入侵。通過(guò)調(diào)節(jié)炎癥反應(yīng)的程度和持續(xù)時(shí)間,有助于維持組織內(nèi)穩(wěn)定的環(huán)境。因此,IL-6的早期釋放以及對(duì)急性期蛋白的合成對(duì)于抵御感染、修復(fù)組織損傷以及調(diào)節(jié)免疫反應(yīng)至關(guān)重要 [15-18]。
4.1.2 IL-6在慢性炎癥中的研究
IL-6在慢性炎癥中扮演著一個(gè)多面手的角色。IL-6參與調(diào)節(jié)骨骼系統(tǒng)的穩(wěn)態(tài),對(duì)破骨細(xì)胞的分化與活化發(fā)揮著重要作用,進(jìn)而影響骨質(zhì)密度和結(jié)構(gòu),最終導(dǎo)致骨質(zhì)疏松癥的發(fā)生 [19-20]。IL-6還能夠誘導(dǎo)血管內(nèi)皮生長(zhǎng)因子(VEGF)的過(guò)度產(chǎn)生,這會(huì)增加血管通透性,成為炎癥性疾病的典型特征之一。例如,在類(lèi)風(fēng)濕性關(guān)節(jié)炎的病理過(guò)程中,滑膜組織的血管通透性增加與IL-6誘導(dǎo)的VEGF過(guò)度表達(dá)密切相關(guān),加劇了關(guān)節(jié)炎的病情 [21-22]。此外,IL-6的產(chǎn)生降低了白蛋白、纖連蛋白和轉(zhuǎn)鐵蛋白的生成。在慢性炎癥性疾病中,該過(guò)程可能導(dǎo)致嚴(yán)重的并發(fā)癥,如罕見(jiàn)病淀粉樣變性 [23]。因此,IL-6的多效性表現(xiàn)不僅僅局限于特定細(xì)胞類(lèi)型,而是在整個(gè)炎癥性疾病過(guò)程中發(fā)揮著重要作用,其調(diào)節(jié)作用影響著骨骼健康和血管通透性等多個(gè)生理過(guò)程。
4.2 IL-6和神經(jīng)系統(tǒng)研究
IL-6不僅在炎癥性疾病中發(fā)揮作用,近年來(lái)發(fā)現(xiàn)也在神經(jīng)系統(tǒng)中發(fā)揮著重要作用。適量的IL-6在神經(jīng)系統(tǒng)內(nèi)調(diào)控神經(jīng)元的發(fā)育、分化和存活過(guò)程,維持神經(jīng)系統(tǒng)的生長(zhǎng)和正常功能。然而,在遭受炎癥刺激或損傷時(shí),機(jī)體會(huì)產(chǎn)生大量的IL-6。過(guò)剩的IL-6通過(guò)致炎作用進(jìn)一步影響神經(jīng)細(xì)胞,導(dǎo)致?lián)p傷。新生兒化膿性腦膜炎(NPM)是新生兒期常見(jiàn)的中樞神經(jīng)系統(tǒng)感染性疾病之一。研究提示,在NPM患兒腦脊液中,細(xì)胞因子IL-6、IL-10濃度升高,提示其在NPM的發(fā)病機(jī)制中發(fā)揮一定作用 [24-25]。此外,IL-6水平在熱性驚厥患兒中明顯升高,尤其是復(fù)雜性熱性驚厥患兒。雖然IL-6基因存在多種位點(diǎn),但其與熱性驚厥易感性之間的關(guān)系尚無(wú)一致結(jié)論 [26-28]。
4.3 IL-6在腫瘤晚期中的研究
IL-6在腫瘤晚期扮演重要角色,與其他IL-6家族細(xì)胞因子一樣,其在癌癥中的表達(dá)異常、受體信號(hào)失調(diào),與不良臨床結(jié)果相關(guān)。IL-6直接影響癌細(xì)胞活動(dòng),間接調(diào)節(jié)基質(zhì)細(xì)胞,影響腫瘤微環(huán)境。IL-6通過(guò)激活STAT3等信號(hào)通路參與多種致癌機(jī)制,包括增強(qiáng)癌細(xì)胞生長(zhǎng)、血管生成、促進(jìn)轉(zhuǎn)移和侵襲。在晚期,IL-6促進(jìn)癌細(xì)胞的轉(zhuǎn)移和擴(kuò)散,促進(jìn)癌癥干細(xì)胞的增殖和種群擴(kuò)張。其他IL-6家族成員如IL-11、LIF和OSM也與腫瘤生長(zhǎng)相關(guān)。IL-6濃度與多種腫瘤的患病率、預(yù)后密切相關(guān),可能成為腫瘤預(yù)后的獨(dú)立指標(biāo) [29-30]。
舉例來(lái)說(shuō),研究發(fā)現(xiàn),結(jié)直腸腺瘤與血清IL-6濃度升高相關(guān),晚期直腸癌患者的IL-6水平顯著高于早期患者,并且與患者的預(yù)后密切相關(guān)。然而,IL-6濃度不能單獨(dú)預(yù)測(cè)結(jié)直腸癌的狀態(tài) [31];胃癌患者研究表明,胃黏膜中的IL-6水平與存活時(shí)間密切相關(guān),提示IL-6可能是腫瘤侵襲的標(biāo)志,具有預(yù)后價(jià)值 [32];肝癌組織中IL-6水平升高與不良預(yù)后相關(guān),可能成為肝癌病人預(yù)后的獨(dú)立指標(biāo) [33];IL-6的分泌促使STAT3磷酸化,增強(qiáng)前列腺癌細(xì)胞的增殖和遷移能力,并同時(shí)抑制細(xì)胞的凋亡和上皮間質(zhì)轉(zhuǎn)化(EMT) [34]。
4.4 IL-6和其它相關(guān)疾病研究
高水平的IL-6與冠心病風(fēng)險(xiǎn)增加相關(guān),其作用可導(dǎo)致血管平滑肌細(xì)胞轉(zhuǎn)化為成骨樣細(xì)胞,促進(jìn)血管內(nèi)鈣鹽沉積 [35-36]。另一方面,IL-6具有極強(qiáng)的致炎敏感性和特異性,它可以促使滑膜和軟骨細(xì)胞釋放炎性遞質(zhì),從而減少滑膜炎癥反應(yīng),降低骨關(guān)節(jié)炎軟骨的損傷 [37]。同時(shí),IL-6還能阻止蛋白聚糖和軟骨膠原的合成,有效抑制骨細(xì)胞的活性 [38-39]。IL-6還與胎糞吸入綜合征、睡眠呼吸暫停相關(guān)的肺動(dòng)脈高壓等疾病密切相關(guān),其相關(guān)作用機(jī)制需進(jìn)一步研究 [40-42]。
一些研究也在探索靶向IL-6在其它病理過(guò)程中的具體作用機(jī)制,如參與內(nèi)皮屏障功能障礙、心肌負(fù)性肌力效應(yīng)、血管內(nèi)皮生長(zhǎng)因子誘導(dǎo)VE-cadherin磷酸化、以及在急性淋巴細(xì)胞白血病等惡性腫瘤治療中使用CAR-T細(xì)胞療法時(shí)所伴隨的細(xì)胞因子釋放綜合癥管理等方面的研究 [43-46]。同時(shí)指出IL-6信號(hào)在巨噬細(xì)胞替代激活途徑中限制內(nèi)毒素血癥和肥胖相關(guān)胰島素抵抗方面的作用 [47-48]。此外,IL-6可促使產(chǎn)生鐵調(diào)節(jié)激素hepcidin,影響血液中的鐵和鋅水平,引發(fā)貧血和低鋅血癥 [49-50]。
5. IL-6的臨床研究前景
IL-6的臨床研究前景呈現(xiàn)出相當(dāng)活躍和潛力。靶向IL-6的主要方法是使用IL-6受體(IL-6R)的單克隆抗體,目前已批準(zhǔn)上市的藥物有3種,如托珠單抗(Tocilizumab)。Tocilizumab通過(guò)結(jié)合IL-6結(jié)合位點(diǎn)上的IL-6R來(lái)中和IL-6的活性,從而阻斷信號(hào)傳導(dǎo)。自托珠單抗應(yīng)用于臨床治療以來(lái),已成功治療多種疾病,如類(lèi)風(fēng)濕關(guān)節(jié)炎、系統(tǒng)性關(guān)節(jié)炎等,并表現(xiàn)出顯著的療效。當(dāng)前,針對(duì)IL-6的治療策略已成功應(yīng)用于若干慢性自身免疫性疾病,并有望在更多疾病的治療中得到廣泛應(yīng)用。在藥物研發(fā)國(guó)家中,美國(guó)和中國(guó)占據(jù)了領(lǐng)先地位,在該賽道上是最具競(jìng)爭(zhēng)力的國(guó)家,值得關(guān)注和重視。預(yù)計(jì)在未來(lái)十年內(nèi),IL-6抑制劑將廣泛應(yīng)用于目前難以治療的各種疾病,包括細(xì)胞因子風(fēng)暴,并有望克服這類(lèi)疾病的難治性。綜上所述,該賽道的藥物研發(fā)進(jìn)展較好,具有較高的可行性。
為鼎力協(xié)助各藥企針對(duì)IL6在系統(tǒng)性炎癥反應(yīng)綜合征、慢性自身免疫性疾病以及腫瘤等在臨床中的研究,華美CUSABIO推出IL6(CSB-YP011664HU)活性蛋白產(chǎn)品,助力您在對(duì)IL6機(jī)制方面的研究或其潛在臨床價(jià)值的探索。
華美CUSABIO蛋白IL6
Recombinant Human Interleukin-6(IL6) (Active) Code: CSB-YP011664HU
Purity was greater than 90% as determined by SDS-PAGE.
Immobilized Human IL6 at 2μg/mL can bind Anti-IL6 recombinant antibody (CSB-RA011664MA1HU). The EC50 is 35.80-41.82 ng/mL.
參考文獻(xiàn):
[1] Wang, Mingxing, et al. "Structural insights into IL-6 signaling inhibition by therapeutic antibodies." Cell Reports 43.3 (2024).
[2] Tanaka, Toshio, Atsushi Ogata, and Masashi Narazaki. "Tocilizumab: an updated review of its use in the treatment of rheumatoid arthritis and its application for other immune-mediated diseases." Clinical Medicine Insights: Therapeutics 5 (2013): CMT-S9282.
[3] Mir, Manzoor Ahmad, Masrat Bashir, and Nusrat Jan. "The Role of Interleukin (IL)-6/IL-6 Receptor Axis in Cancer." Cytokine and Chemokine Networks in Cancer. Singapore: Springer Nature Singapore, 2023. 137-164.
[4] Yoshizaki, Kazuyuki, et al. "Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman's disease." (1989): 1360-1367.
[5] Asaoku, Hideki, et al. "Decrease in BSF-2/IL-6 response in advanced cases of multiple myeloma." Blood 72.2 (1988): 429-432.
[6] Tanaka, Toshio, Masashi Narazaki, and Tadamitsu Kishimoto. "IL-6 in inflammation, immunity, and disease." Cold Spring Harbor perspectives in biology 6.10 (2014): a016295.
[7] Unver, Nese, and Florencia McAllister. "IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets." Cytokine & growth factor reviews 41 (2018): 10-17.
[8] Mihara, Masahiko, et al. "IL-6/IL-6 receptor system and its role in physiological and pathological conditions." Clinical science 122.4 (2012): 143-159.
[9] Rafiq, Sajjad, et al. "A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects." Genes & Immunity 8.7 (2007): 552-559.
[10] Heo, Tae-Hwe, Joseph Wahler, and Nanjoo Suh. "Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer." Oncotarget 7.13 (2016): 15460.
[11] Xu, Junnv, et al. "IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma." Frontiers in oncology 11 (2021): 760971.
[12] Masuda, Kazuya, et al. "Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo." Proceedings of the National Academy of Sciences 110.23 (2013): 9409-9414.
[13] Wang, Qing, et al. "Soluble interleukin-6 receptor-mediated innate immune response to DNA and RNA viruses." Journal of virology 87.20 (2013): 11244-11254.
[14] Liu, Xin, et al. "IL‐6 expression promoted by Poly (I: C) in cervical cancer cells regulates cytokine expression and recruitment of macrophages." Journal of cellular and molecular medicine 24.3 (2020): 2284-2293.
[15] Yoshizaki, Kazuyuki. "Pathogenic role of IL-6 combined with TNF-α or IL-1 in the induction of acute phase proteins SAA and CRP in chronic inflammatory diseases." Advances in TNF Family Research: Proceedings of the 12th International TNF Conference, 2009. New York, NY: Springer New York, 2010.
[16] Yap, S. H., et al. "Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1091.3 (1991): 405-408.
[17] Hagihara, Keisuke, et al. "IL-6 plays a critical role in the synergistic induction of human serum amyloid A (SAA) gene when stimulated with proinflammatory cytokines as analyzed with an SAA isoform real-time quantitative RT-PCR assay system." Biochemical and biophysical research communications 314.2 (2004): 363-369.
[18] Fu, Yang, et al. "The use of PCT, CRP, IL-6 and SAA in critically ill patients for an early distinction between candidemia and Gram positive/negative bacteremia." Journal of Infection 64.4 (2012): 438-440.
[19] Manolagas, Stavros C., Teresita Bellido, and Robert L. Jilka. "New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: roles of IL-6 and gp130." International journal of immunopharmacology 17.2 (1995): 109-116.
[20] Edwards, C. J., and E. Williams. "The role of interleukin-6 in rheumatoid arthritis-associated osteoporosis." Osteoporosis international 21 (2010): 1287-1293.
[21] Yoo, Seung-Ah, et al. "Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-α and IL-6 by human monocytes." The Journal of Immunology 174.9 (2005): 5846-5855.
[22] Cheng, Wen-Xiang, et al. "Genistein inhibits angiogenesis developed during rheumatoid arthritis through the IL-6/JAK2/STAT3/VEGF signalling pathway." Journal of orthopaedic translation 22 (2020): 92-100.
[23] Okuda, Yasuaki. "AA amyloidosis–Benefits and prospects of IL-6 inhibitors." Modern rheumatology 29.2 (2019): 268-274.
[24] Liu, Chunmei, et al. "The value of interleukin-6 (IL-6) within 6 hours after birth in the prompt diagnosis of early-onset neonatal sepsis." Translational Pediatrics 9.5 (2020): 629.
[25] Li, Jing, et al. "Relationship between PCT, IL-6 and HS-CRP in serum and cerebrospinal fluid and prognosis of neonates with purulent meningitis." (2021): 2831-2836.
[26] Straussberg, Rachel, et al. "Pro-and anti-inflammatory cytokines in children with febrile convulsions." Pediatric neurology 24.1 (2001): 49-53.
[27] Saghazadeh, Amene, et al. "Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: systematic review and meta-analysis." Reviews in the Neurosciences 25.2 (2014): 281-305.
[28] Gupta, Surbhi, et al. "Serum interleukin-6 levels in children with febrile seizures." Indian Pediatrics 55 (2018): 411-413.
[29] Taher, Mustafa Yassin, David Marc Davies, and John Maher. "The role of the interleukin (IL)-6/IL-6 receptor axis in cancer." Biochemical Society Transactions 46.6 (2018): 1449-1462.
[30] Gonzalez-Aparicio, Manuela, and Carlos Alfaro. "Implication of interleukin family in cancer pathogenesis and treatment." Cancers 13.5 (2021): 1016.
[31] Waldner, Maximilian J., Sebastian Foersch, and Markus F. Neurath. "Interleukin-6-a key regulator of colorectal cancer development." International journal of biological sciences 8.9 (2012): 1248.
[32] Ashizawa, Tatsuto, et al. "Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor." Gastric Cancer 8 (2005): 124-131.
[33] He, Guobin, et al. "Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling." Cell 155.2 (2013): 384-396.
[34] Nguyen, Daniel P., Jinyi Li, and Ashutosh K. Tewari. "Inflammation and prostate cancer: the role of interleukin 6 (IL‐6)." BJU international 113.6 (2014): 986-992.
[35] Kurozumi, Akira, et al. "IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2." Bone 124 (2019): 53-61.
[36] Anderson, Daniel R., et al. "IL-6 and its receptors in coronary artery disease and acute myocardial infarction." Cytokine 62.3 (2013): 395-400.
[37] Latourte, Augustin, et al. "Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis." Annals of the rheumatic diseases 76.4 (2017): 748-755.
[38] Flannery, Carl R., et al. "IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage." Matrix Biology 19.6 (2000): 549-553.
[39] Sui, Yihong, et al. "Mechanical injury potentiates proteoglycan catabolism induced by interleukin‐6 with soluble interleukin‐6 receptor and tumor necrosis factor α in immature bovine and adult human articular cartilage." Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 60.10 (2009): 2985-2996.
[40] Steiner, M. Kathryn, et al. "Interleukin-6 overexpression induces pulmonary hypertension." Circulation research 104.2 (2009): 236-244.
[41] Haakonsen Lindenskov, Paal Helge, et al. "Meconium aspiration syndrome: possible pathophysiological mechanisms and future potential therapies." Neonatology 107.3 (2015): 225-230.
[42] Huiguo, Liu, et al. "The change of interleukin-6 and tumor necrosis factor in patients with obstructive sleep apnea syndrome." Journal of Tongji Medical University 20 (2000): 200-202.
[43] Desai, Tina R., et al. "Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway." Journal of surgical research 104.2 (2002): 118-123.
[44] Comini, Laura, et al. "Acute haemodynamic effects of IL-6 treatment in vivo: involvement of vagus nerve in NO-mediated negative inotropism." Cytokine 30.5 (2005): 236-242.
[45] Yang, Yong-Chang, et al. "Interleukin-6 downregulates the expression of vascular endothelial-cadherin and increases permeability in renal glomerular endothelial cells via the trans-signaling pathway." Inflammation 45.6 (2022): 2544-2558.
[46] Zhang, Yinqiang, et al. "Timing of tocilizumab administration under the guidance of IL-6 in CAR-T therapy for R/R acute lymphoblastic leukemia." Frontiers in Immunology 13 (2022): 914959.
[47] Mauer, Jan, et al. "Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin." Nature immunology 15.5 (2014): 423-430.
[48] Kuo, Feng-Chih, et al. "Circulating soluble IL-6 receptor concentration and visceral adipocyte size are related to insulin resistance in Taiwanese adults with morbid obesity." Metabolic Syndrome and Related Disorders 15.4 (2017): 187-193.
[49] Nemeth, Elizabeta, et al. "IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin." The Journal of clinical investigation 113.9 (2004): 1271-1276.
[50] Liuzzi, Juan P., et al. "Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response." Proceedings of the National Academy of Sciences 102.19 (2005): 6843-6848.