CT83/KK-LC-1蛋白:癌睪抗原CTAs家族潛力新秀,乳腺癌、肺癌、胃癌等腫瘤臨床研究進(jìn)行中!
日期:2024-04-30 11:31:35
癌睪抗原(Cancer Testis Antigens,CTAs)是一類主要在睪丸組織中表達(dá)的蛋白質(zhì),而在其它正常組織中通常不表達(dá)。越來越多的研究表明,CTAs在多種類型的腫瘤中呈異常高表達(dá),且許多CTAs是致瘤性的。癌睪抗原-83(CT83),也稱為KK-LC-1,屬于CTAs家族中的一員。CT83最初在2006年的肺癌研究中被鑒定為一種腫瘤特異性抗原,隨后的研究也發(fā)現(xiàn)它在胃癌、乳腺癌和肝癌等多種腫瘤中呈現(xiàn)差異性表達(dá)。來自Pubmed數(shù)據(jù)顯示,CT83相關(guān)的報(bào)道鮮少,其在腫瘤中的作用和機(jī)制尚不明確。此外,市場上針對CT83的商業(yè)化單克隆抗體也是極其稀缺。盡管如此,已有關(guān)于CT83的研究進(jìn)入臨床階段,因此,CT83作為一個(gè)新興的腫瘤研究靶點(diǎn),正逐漸受到藥物研發(fā)機(jī)構(gòu)的關(guān)注!
1. 什么是CT83?
1.1 CT83的結(jié)構(gòu)
CT83,又稱CXorf61或KK-LC-1,屬于腫瘤/睪丸抗原CTAs(cancer/testis antigens)成員之一。CT83最初是從肺癌患者異體肺癌細(xì)胞系與HLA-B*1507限制性細(xì)胞毒性T淋巴細(xì)胞(CTL)建立的cDNA文庫中篩選并克隆而得,因此也常見為Kita-Kyushu肺癌抗原-1(KK-LC-1)。CT83編碼基因位于Xq22染色體上,編碼的蛋白質(zhì)含有113個(gè)氨基酸。早在1991年,van der Bruggen等通過T細(xì)胞表位克隆技術(shù)發(fā)現(xiàn)了第一個(gè)腫瘤/睪丸抗原--MAGE-1/MAGE-A1。隨后,MAGE-A家族基因陸續(xù)被鑒定。后來,通過SEREX技術(shù),研究人員發(fā)現(xiàn)了其他抗原,如NY-ESO-1/CTAG1A,NY-SAR-35/FMR1NB,CT7,SSX2,SCP1,OY-TES-1,PASD1,SLCO6A1和KK-LC-1等抗原。目前已鑒定的CTAs抗原超過200種,但它們的免疫原性仍有待進(jìn)一步研究 [1-3]。
1.2 CT83表達(dá)和功能
癌睪抗原CTAs是一種在男性睪丸組織中表達(dá),其它正常組織中不表達(dá),而在腫瘤組織中高表達(dá)的蛋白。癌睪抗原的異常高表達(dá)與腫瘤的發(fā)生與轉(zhuǎn)移緊密相關(guān)。多種癌睪抗原在肺癌、肝癌、胃癌、腸癌、乳腺癌、白血病和宮頸癌等惡性腫瘤中異常高表達(dá),包括CT10、CT45和CT83等。雖然CT83的結(jié)構(gòu)和功能尚未完全闡明,CT83作為癌睪抗原家族的一員,已有報(bào)道,CT83在多種惡性腫瘤中異常高表達(dá)(圖1)[3]。此外,有研究揭示,CT83高表達(dá)可以在體內(nèi)外顯著增加肝癌細(xì)胞的遷移、侵襲、增殖和EMT的能力。因此,CT83被認(rèn)為是一個(gè)潛在的腫瘤免疫治療靶標(biāo) [4-6]。
圖1. 癌睪抗原CTAs和腫瘤密切相關(guān) [3]
2. CT83相關(guān)的信號通路研究
CT83作為一種致瘤基因,在多種腫瘤中高表達(dá),其背后涉及啟動子去甲基化及致癌轉(zhuǎn)錄因子STAT3介導(dǎo)的轉(zhuǎn)錄激活過程。然而,是何種因素激活STAT3從而與CT83基因啟動子結(jié)合進(jìn)而促進(jìn)CT83高表達(dá)有待更深入研究。無論如何,CT83的這種過度表達(dá)對癌細(xì)胞的遷移與侵襲特性產(chǎn)生顯著影響,表現(xiàn)為增強(qiáng)此類惡性行為,而基因敲除實(shí)驗(yàn)則證實(shí)其對這些過程的必要調(diào)控作用。目前,已有相關(guān)研究進(jìn)一步闡述CT83在腫瘤中的可能性信號調(diào)控機(jī)制 [7-9]。
一項(xiàng)研究發(fā)現(xiàn),CT83高表達(dá)后可以提高宮頸癌細(xì)胞中磷酸化ERK、HIF-la、HIF-2a和VE-Cadherin等四種致瘤蛋白水平,CT83敲除可以抑制相關(guān)蛋白的表達(dá)(圖2) [6, 10-11, 20]??偹苤?,ERK信號通路在細(xì)胞的增殖、分化和癌變中起著重要作用,且與腫瘤的發(fā)生轉(zhuǎn)移緊密相關(guān);HIF-1a和HIF-2a作為轉(zhuǎn)錄因子,可以激活一系列與腫瘤細(xì)胞遷移、粘附和血管形成有關(guān)基因的表達(dá);VE-Cadherin作為血管內(nèi)皮細(xì)胞鈣黏附蛋白,在腫瘤細(xì)胞黏附連接,血管形成中發(fā)揮重要作用 [11]。此外,關(guān)于CT83在其它腫瘤中的研究提示,CT83通過調(diào)控癌基因(如HSPB8和CDH5)與抑癌基因(如BATF、CDHR5和PRAPI)的表達(dá)平衡,促進(jìn)腫瘤的惡性轉(zhuǎn)化 [18-20]。因此,CT83在腫瘤中的信號調(diào)節(jié),其涉及多個(gè)關(guān)鍵環(huán)節(jié),它可能通過影響癌基因與抑癌基因的表達(dá)平衡以及參與重要的信號通路調(diào)控,促進(jìn)了腫瘤的惡性轉(zhuǎn)化。
圖2. CT83相關(guān)的信號通路研究 [20]
3. CT83和腫瘤相關(guān)的研究
CT83作為一種腫瘤特異性抗原,雖然現(xiàn)階段國內(nèi)外的相關(guān)報(bào)道較少,但現(xiàn)有文獻(xiàn)表明,CT83可能成為未來腫瘤研究的重要靶標(biāo)。研究表明,CT83在多種腫瘤中異常表達(dá),包括肺癌、胃癌、乳腺癌和肝癌等,且與腫瘤的發(fā)生和發(fā)展密切相關(guān)。這一發(fā)現(xiàn)引起了學(xué)者們對CT83在腫瘤中作用和機(jī)制的興趣。因此,CT83正逐漸嶄露頭角,吸引著越來越多的研究者的關(guān)注。
3.1 CT83和乳腺癌研究
相關(guān)生信分析表明,生物信息學(xué)分析顯示,CT83激活與三陰性乳腺癌(TNBC)患者低生存率密切相關(guān)。CT83異常激活導(dǎo)致16個(gè)關(guān)鍵細(xì)胞周期調(diào)控基因失調(diào),如CCNB2、CDC20、CDC25A/B、CDK1、CHEK1、ESPL1、MAD2L1、MCM2、MCM3、MCM5、MCM6、MYC、ORC6、PLK1和PTTG1,形成驅(qū)動TNBC發(fā)生的細(xì)胞周期信號網(wǎng)絡(luò)。CDKs(如CDK1、CDK2、CDK4、CDK6)、CDC25磷酸酶及MYC致癌轉(zhuǎn)錄因子在腫瘤中常異常表達(dá)或活性增強(qiáng),均參與細(xì)胞周期調(diào)控 [21]。此外,有研究報(bào)道,KK-LC-1通過MAL2/MUC1-C/PI3K/AKT/mTOR途徑調(diào)節(jié)三陰性乳腺癌細(xì)胞的生物學(xué)行為(圖3) [22]。因此,CT83可能通過協(xié)同激活一系列致瘤性細(xì)胞周期調(diào)控基因,促進(jìn)三陰性乳腺癌TNBC的發(fā)生發(fā)展。
圖3. CT83/KK-LC-1通過MAL2/MUC1-C/PI3K/AKT/mTOR途徑調(diào)節(jié)TNBC [22]
3.2 CT83和肺癌研究
研究發(fā)現(xiàn),CT83/KK-LC-1特異性的TCRαβ‐CD8 γδT細(xì)胞對KK-LC-1陽性的肺癌細(xì)胞F1121L顯示出了細(xì)胞毒效應(yīng),且通過IFN-γ分泌增強(qiáng)抗癌效果。此外,有研究通過對CT83的轉(zhuǎn)錄本的表達(dá)進(jìn)行生信分析后發(fā)現(xiàn),6個(gè)與CT83相關(guān)的下游基因(CPS1、RHOV、TNNT1、FAM83A、JGF2BP1和GRIN2A)與肺癌患者不良預(yù)后相關(guān),且6種免疫檢查點(diǎn)分子(CTLA4、PD1、IDO1、TDO2、LAG3和TIGIT)與肺腺癌高風(fēng)險(xiǎn)評分相關(guān),免疫抑制性微環(huán)境對預(yù)后的影響。抑制肺癌細(xì)胞CT83的表達(dá)或活性,理論上有望改善免疫微環(huán)境,增強(qiáng)免疫系統(tǒng)對肺癌的清除能力,提高患者預(yù)后。然而,CT83在肺癌中的確切作用機(jī)制尚有待深入探究 [23]。
3.3 CT83和胃癌研究
研究發(fā)現(xiàn),幽門螺旋桿菌陽性胃癌患者中CT83常高表達(dá),表明二者關(guān)聯(lián)密切。進(jìn)一步研究顯示,CT83高表達(dá)胃癌患者體內(nèi)幽門螺旋桿菌IgG滴度顯著高于無CT83表達(dá)者,提示CT83可能是治療干預(yù)的關(guān)鍵靶點(diǎn)。通過基因表達(dá)譜分析,發(fā)現(xiàn)胃癌早期關(guān)鍵mRNAs與蛋白質(zhì)參與分泌調(diào)節(jié)、營養(yǎng)物質(zhì)消化吸收、膽固醇代謝、血小板激活及p53信號傳導(dǎo)等生物過程。生存分析中,構(gòu)建的以ADGRG7、CT83和MMP12為基礎(chǔ)的胃癌預(yù)后模型預(yù)測性能良好,為臨床決策提供客觀依據(jù)。因此,CT83在揭示胃癌與幽門螺旋桿菌相互作用機(jī)制、指導(dǎo)針對性治療及預(yù)后評估方面具有重要意義 [24]。
3.4 CT83和肝癌研究
CT83在肝癌組織中呈現(xiàn)出顯著的過度表達(dá)現(xiàn)象,其通過直接干預(yù)Presenilin-1/Notch1/Hes1信號傳導(dǎo)軸,對肝癌細(xì)胞的增殖、遷移、侵襲以及上皮間質(zhì)轉(zhuǎn)化(EMT)進(jìn)程產(chǎn)生深遠(yuǎn)影響。Notch信號通路,作為組織與器官正常發(fā)育的關(guān)鍵調(diào)控因子,在肝癌的發(fā)生與演化過程中起著核心作用。在哺乳動物體內(nèi),Notch家族包含四種不同的受體蛋白,其中Notch1在肝細(xì)胞中占據(jù)主導(dǎo)地位,其高表達(dá)與肝癌惡化、轉(zhuǎn)移及不良預(yù)后相關(guān)。另一方面,CpG島低甲基化可激活癌睪抗原基因,且與CT83高表達(dá)有關(guān)??偨Y(jié)而言,CT83在肝癌的進(jìn)展與轉(zhuǎn)移環(huán)節(jié)中發(fā)揮著不可或缺的作用,因而具備作為肝癌診斷與預(yù)后評估的重要生物標(biāo)志物的潛力 [25]。
3.5 CT83和其它癌癥研究
此外,CT83蛋白在黑色素瘤、結(jié)腸癌、宮頸癌、食管癌及胰腺癌等多種惡性腫瘤中呈現(xiàn)出顯著的過表達(dá)現(xiàn)象,引起了醫(yī)學(xué)研究領(lǐng)域的高度重視 [26-29]。大量研究證據(jù)表明,CT83的異常高表達(dá)并非偶然,而是與特定的分子機(jī)制緊密關(guān)聯(lián)。具體來說,CT83基因啟動子區(qū)域的DNA甲基化狀態(tài)發(fā)生顯著變化,尤其是去甲基化過程的增強(qiáng),與CT83的過度表達(dá)直接相關(guān)。同時(shí),這一過程往往伴隨著致癌轉(zhuǎn)錄因子STAT3的激活,兩者協(xié)同作用,促進(jìn)癌細(xì)胞遷移與侵襲。此現(xiàn)象暗示CT83的高表達(dá)可能由啟動子去甲基化的共性表觀遺傳調(diào)控所致。CT83有潛力作為癌癥診斷標(biāo)志物、預(yù)后指標(biāo)及免疫治療靶點(diǎn),但這些理論有待進(jìn)一步研究驗(yàn)證。
4. CT83的臨床研究前景
目前針對CT83/KKLC1靶點(diǎn)的抗癌藥物已有3款進(jìn)入臨床試驗(yàn),涵蓋乳腺癌、肺癌、胃癌等多種適應(yīng)癥,其作用機(jī)制涉及免疫細(xì)胞毒性和T淋巴細(xì)胞激活。多家研究機(jī)構(gòu)如National Cancer Institute、T-Cure Bioscience, Inc.以及上海精繕生物科技有限責(zé)任公司等參與其中。尤其值得關(guān)注的是,瑞士CDR-Life Inc.在2024年AACR年會上公布的針對KK-LC-1/HLA-A01的TCE抗體預(yù)臨床數(shù)據(jù),展現(xiàn)出顯著的抗腫瘤特性和活性。盡管面臨健康組織中非目標(biāo)肽的挑戰(zhàn),該TCE抗體對KK-LC-1/HLA-A01陽性癌細(xì)胞表現(xiàn)出強(qiáng)大殺傷力,且對健康細(xì)胞無細(xì)胞毒性,體外研究顯示其對目標(biāo)肽具有高度特異性結(jié)合與激活能力 [30]。這些成果不僅增強(qiáng)了對KK-LC-1/CT83靶向療法的信心,也拓寬了針對不同HLA等位基因患者的治療選擇,預(yù)示著CT83靶點(diǎn)將在未來臨床研究中開啟更廣泛、更具潛力的抗癌治療研究路徑。
為鼎力協(xié)助各藥企針對CT83/KKLC1在多種腫瘤,如乳腺癌、肺癌、胃癌等在臨床中的研究,華美CUSABIO推出CT83/KKLC1(CSB-MP711093HU; CSB-EP711093HU1; CSB-EP711093HU1-B; CSB-EP711093HU)蛋白產(chǎn)品,助力您在對CT83/KKLC1機(jī)制方面的研究或其潛在臨床價(jià)值的探索。
華美CUSABIO蛋白CT83
Recombinant Human CT83-VLPs
Code:CSB-MP711093HU
Recombinant Human CT83, partial
Code:CSB-EP711093HU1
Recombinant Human CT83, partial,Biotinylated
Code:CSB-EP711093HU1-B
Recombinant Human CT83
Code:CSB-EP711093HU
參考文獻(xiàn):
[1] Bai, Rui, and Cheng Yuan. "Kita-kyushu lung cancer antigen-1 (KK-LC-1): a promising cancer testis antigen." Aging and Disease 13.4 (2022): 1267.
[2] Hsu, Robert, et al. "Molecular characterization of Kita-Kyushu lung cancer antigen (KK-LC-1) expressing carcinomas." Oncotarget 12.25 (2021): 2449.
[3] Yang, Ping, et al. "Cancer/testis antigens as biomarker and target for the diagnosis, prognosis, and therapy of lung cancer." Frontiers in Oncology 12 (2022): 864159.
[4] Zhou, Xingchun, et al. "Heterogeneous expression of CT10, CT45 and GAGE7 antigens and their prognostic significance in human breast carcinoma." Japanese Journal of Clinical Oncology 43.3 (2013): 243-250.
[5] Chen, Zhiqiang, et al. "Hypomethylation‐mediated activation of cancer/testis antigen KK‐LC‐1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling." Cell Proliferation 52.3 (2019): e12581.
[6] Norberg, Scott, et al. "A phase I trial of T-cell receptor gene therapy targeting KK-LC-1 for gastric, breast, cervical, lung and other KK-LC-1 positive epithelial cancers." (2022): TPS2678-TPS2678.
[7] Kang, Yanli, et al. "Cancer-testis antigen KK-LC-1 is a potential biomarker associated with immune cell infiltration in lung adenocarcinoma." BMC cancer 22.1 (2022): 834.
[8] Chen, Zhiqiang, et al. "Hypomethylation‐mediated activation of cancer/testis antigen KK‐LC‐1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling." Cell Proliferation 52.3 (2019): e12581.
[9] Mabjeesh, Nicola J., and S. Amir. "Hypoxia-inducible factor (HIF) in human tumorigenesis." Histology and histopathology (2007).
[10] Marcinkowski, Bridget, et al. "Preclinical characterization of a KK-LC-1-specific T cell receptor for the treatment of epithelial cancers." Cancer Research 79.13_Supplement (2019): 1429-1429.
[11] Kim, Min Kyu, et al. "Clinical significance of HIF-2α immunostaining area in radioresistant cervical cancer." Journal of Gynecologic Oncology 22.1 (2011): 44.
[12] Gul, Samina, et al. "Stemness signature and targeted therapeutic drugs identification for Triple Negative Breast Cancer." Scientific Data 10.1 (2023): 815.
[13] Zeng, Yaoying, et al. "Integrating Network Pharmacology, Molecular Docking, and Experimental Validation to Investigate the Mechanism of (?)-Guaiol Against Lung Adenocarcinoma." Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 28 (2022): e937131-1.
[14] Chen, Chen, et al. "Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer." Scientific reports 11.1 (2021): 12172.
[15] Gao, Junyi, et al. "Up‐regulation of CDHR5 expression promotes malignant phenotype of pancreatic ductal adenocarcinoma." Journal of Cellular and Molecular Medicine 24.21 (2020): 12726-12735.
[16] Inoue-Shibui, Aya, et al. "A novel deletion in the C-terminal region of HSPB8 in a family with rimmed vacuolar myopathy." Journal of Human Genetics 66.10 (2021): 965-972.
[17] Li, Qingyang, et al. "Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers." Journal for Immunotherapy of Cancer 10.7 (2022).
[18] Marcinkowski, Bridget, et al. "Cancer targeting by TCR gene-engineered T cells directed against Kita-Kyushu Lung Cancer Antigen-1." Journal for immunotherapy of cancer 7 (2019): 1-9.
[19] Lin, Min, et al. "Recent advances on the molecular mechanism of cervical carcinogenesis based on systems biology technologies." Computational and Structural Biotechnology Journal 17 (2019): 241-250.
[20] Qiao Yingnan. The mechanisms underlying regulation of proto-oncogene CT83 expression and promotion of cervical cancer cell migration and invasion [D]. Soochow University, 2022.
[21] Chen, Chen, et al. "Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer." Scientific reports 11.1 (2021): 12172.
[22] Zhu, Xudong, et al. "Targeting KK-LC-1 inhibits malignant biological behaviors of triple-negative breast cancer." Journal of Translational Medicine 21.1 (2023): 184.
[23] Ichiki, Yoshinobu, et al. "Development of adoptive immunotherapy with KK‐LC‐1‐specific TCR‐transduced γδT cells against lung cancer cells." Cancer Science 111.11 (2020): 4021-4030.
[24] Hu, Yeting, et al. "Quantitative Analysis on Molecular Characteristics Evolution of Gastric Cancer Progression and Prognosis." Advanced Biology 7.10 (2023): 2300129.
[25] Chen, Zhiqiang, et al. "Hypomethylation‐mediated activation of cancer/testis antigen KK‐LC‐1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling." Cell Proliferation 52.3 (2019): e12581.
[26] Otsuka, Toshikazu, et al. "Detection of Kita-Kyushu Lung Cancer Antigen-1, a Cancer/Testis Antigen, in the Stomach Close to a Cancerous Condition." Journal of Cancer 13.14 (2022): 3526.
[27] Fukuyama, Takashi, et al. "Expression of KK-LC-1, a cancer/testis antigen, at non-tumour sites of the stomach carrying a tumour." Scientific reports 8.1 (2018): 6131.
[28] Bai, Rui, and Cheng Yuan. "Kita-kyushu lung cancer antigen-1 (KK-LC-1): a promising cancer testis antigen." Aging and Disease 13.4 (2022): 1267.
[29] Marcinkowski, Bridget, et al. "Cancer targeting by TCR gene-engineered T cells directed against Kita-Kyushu Lung Cancer Antigen-1." Journal for immunotherapy of cancer 7 (2019): 1-9.
[30] Scheifele, Fabian, et al. "Abstract LB442: Novel antibodies against a KK-LC-1-derived peptide presented on HLA-A* 01 on tumor cells." Cancer Research 84.7_Supplement (2024): LB442-LB442.