Your Good Partner in Biology Research

兩種類型的巨噬細(xì)胞:M1型和M2型巨噬細(xì)胞

日期:2023-11-28 09:18:56

巨噬細(xì)胞是常見(jiàn)的噬菌細(xì)胞,屬于免疫細(xì)胞的一種。它是一種分布在組織中的白細(xì)胞,起源于單核細(xì)胞。巨噬細(xì)胞具有可塑性和多功能性的特點(diǎn)。它在清除老化或凋亡細(xì)胞、吞噬與免疫相關(guān)的復(fù)合物和病原體,以及維持體內(nèi)穩(wěn)態(tài)方面發(fā)揮著重要作用。巨噬細(xì)胞的表型和功能可能會(huì)受到微環(huán)境的極化影響。

巨噬細(xì)胞集落刺激因子

圖1. 巨噬細(xì)胞的可塑性


 

1. 巨噬細(xì)胞分類

根據(jù)巨噬細(xì)胞的活化狀態(tài)和功能,它們可以分為M1型(經(jīng)典活化巨噬細(xì)胞)和M2型(替代活化巨噬細(xì)胞)[1] [2]。

IFN-γ可以將巨噬細(xì)胞分化為促炎性的M1巨噬細(xì)胞。與IFN-γ不同,Th2細(xì)胞產(chǎn)生的IL-4 [3]可以將巨噬細(xì)胞轉(zhuǎn)化為抑制炎癥的M2型巨噬細(xì)胞。

M1巨噬細(xì)胞的作用是分泌促炎性細(xì)胞因子和趨化因子,呈遞抗原,從而參與積極的免疫應(yīng)答,作為免疫監(jiān)視的功能。它產(chǎn)生的主要促炎細(xì)胞因子是IL-6、IL-12和TNF-alpha。

M2巨噬細(xì)胞主要分泌Arginase-I、IL-10 [4] [5] 和TGF-β等抗炎細(xì)胞因子,具有減少炎癥和促進(jìn)腫瘤生長(zhǎng)及免疫抑制功能 [6]。它在傷口愈合和組織修復(fù)中發(fā)揮重要作用。

總之,巨噬細(xì)胞是一把“雙刃劍”,它既可以阻止癌細(xì)胞的擴(kuò)散,也可以幫助癌細(xì)胞的生長(zhǎng)和擴(kuò)散。在特定的微環(huán)境中,M1和M2巨噬細(xì)胞也可以相互轉(zhuǎn)化 [7]

巨噬細(xì)胞類型

圖2. 巨噬細(xì)胞的類型


 

2. 巨噬細(xì)胞功能的兩個(gè)方面

巨噬細(xì)胞在腫瘤殺傷方面的積極作用:活化的巨噬細(xì)胞產(chǎn)生TNF、水解蛋白酶、干擾素和過(guò)氧化物,直接殺傷或抑制腫瘤細(xì)胞的生長(zhǎng)。活化的巨噬細(xì)胞分泌IL-1并激活T細(xì)胞產(chǎn)生各種抗腫瘤的細(xì)胞毒性淋巴細(xì)胞,這些細(xì)胞可以直接殺傷腫瘤,或者通過(guò)活化的LAK細(xì)胞、腫瘤浸潤(rùn)淋巴細(xì)胞或NK細(xì)胞與巨噬細(xì)胞合作來(lái)殺傷腫瘤。

巨噬細(xì)胞促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)移:巨噬細(xì)胞促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)移的機(jī)制是,巨噬細(xì)胞產(chǎn)生腫瘤生長(zhǎng)促進(jìn)物質(zhì),如腫瘤血管生長(zhǎng)因子、人類腫瘤單克隆細(xì)胞生長(zhǎng)因子和一些酶和激活因子,可以分別導(dǎo)致腫瘤血管生成和促進(jìn)腫瘤細(xì)胞擴(kuò)張。

另一方面,巨噬細(xì)胞分泌的酶破壞了腫瘤周圍的組織,促進(jìn)了腫瘤細(xì)胞的增殖和轉(zhuǎn)移。巨噬細(xì)胞的惡性轉(zhuǎn)化也導(dǎo)致腫瘤轉(zhuǎn)移。


 

3. 影響巨噬細(xì)胞極化的轉(zhuǎn)錄因子和信號(hào)通路

巨噬細(xì)胞的表型和功能極化受多種因素調(diào)控。影響巨噬細(xì)胞極化的信號(hào)傳導(dǎo)體和轉(zhuǎn)錄活化因子如下:STATs、干擾調(diào)節(jié)因子(IRFs)、核因子(NF-kappab)、激活蛋白(AP1)、過(guò)氧化物酶體增殖激活受體(PPAR-gamma)和cAMP響應(yīng)元結(jié)合蛋白(CREB)。它們相互作用以調(diào)節(jié)巨噬細(xì)胞的表型。

巨噬細(xì)胞功能

圖3. 影響巨噬細(xì)胞極化的因素

Notch通路通過(guò)控制基因表達(dá)調(diào)控巨噬細(xì)胞極化,從而調(diào)節(jié)免疫應(yīng)答。

髓源性巨噬細(xì)胞在LPS和toll樣受體的刺激下激活Notch1和NF-kappab,從而使m1型巨噬細(xì)胞極化。Notch1依賴性M1極化的一種分子機(jī)制是NICD1對(duì)M1型基因的反激活,從而產(chǎn)生Notch1激活的效應(yīng) [8]。此外,IRF5與M1巨噬細(xì)胞極化有關(guān),可被動(dòng)脈粥樣硬化中的炎癥刺激 [9],IRF5蛋白的硝化作用可抑制IRF5靶向的M1巨噬細(xì)胞信號(hào)基因激活 [10]

JAK-STAT信號(hào)通路也與巨噬細(xì)胞的表型活性密切相關(guān) [11]。IFN(干擾素)通過(guò)這一信號(hào)通路起作用。IFN-γ可誘導(dǎo)M1巨噬細(xì)胞極化。IFN-α/IFN-β介導(dǎo)的信號(hào)通路在巨噬細(xì)胞極化中的作用尚不清楚,但已知在一定條件下可增強(qiáng)抗炎作用。

PI3K通路在巨噬細(xì)胞的存活中起著重要作用 [12]。不同AKt激酶對(duì)巨噬細(xì)胞極化的影響不同。其中,AKt1可被PI3K激活,AKt1消融導(dǎo)致m1型巨噬細(xì)胞極化,AKt2消融導(dǎo)致m2型巨噬細(xì)胞極化 [13][14]。

除了上述信號(hào)通路外,線粒體生物合成在巨噬細(xì)胞極化過(guò)程中也起著重要作用 [15]。此外,HGF通過(guò)激活JAK2/STAT3信號(hào)通路,促進(jìn)巨噬細(xì)胞從M1向M2的轉(zhuǎn)化。但其分子機(jī)制尚不清楚。


 

4. 跨度巨噬細(xì)胞標(biāo)記

CD68和CD11b是巨噬細(xì)胞的總標(biāo)記。對(duì)于M1和M2巨噬細(xì)胞,它們有特定的標(biāo)記。

 

4.1 M1巨噬細(xì)胞標(biāo)記

M1巨噬細(xì)胞可以選擇CD80、CD86、CD64、CD16和CD32作為標(biāo)記。此外,M1中的一氧化氮合酶(iNOS)的表達(dá)也可以作為表型標(biāo)記。

CD80

CD80,又稱B7、B7.1或BB1,是T淋巴細(xì)胞激活抗原。它的分子量為60 kD。它與CD86協(xié)同作用,激活T淋巴細(xì)胞,在自身免疫監(jiān)測(cè)、體液免疫應(yīng)答和移植應(yīng)答中發(fā)揮重要作用。

CD86

CD86,又稱B7.2,是T淋巴細(xì)胞激活抗原,分子量為80 kD,可以在樹(shù)突狀細(xì)胞、單核細(xì)胞、T淋巴細(xì)胞和B淋巴細(xì)胞中表達(dá)。CD86與其配體CD28和CTLA4相互作用,誘導(dǎo)T淋巴細(xì)胞增殖并產(chǎn)生IL-2。

CD64

CD64,又稱高親和力免疫球蛋白γ Fc受體Ⅰ,具有先天免疫反應(yīng)和適應(yīng)性免疫反應(yīng)的功能。

CD32

CD32也稱為低親和力免疫球蛋白γ Fc區(qū)域受體Ⅱ-b,參與免疫復(fù)合物的吞噬和B細(xì)胞對(duì)抗體生成的調(diào)控。

 

4.2 M2巨噬細(xì)胞標(biāo)記

CD163和CD206是鑒定M2巨噬細(xì)胞的主要標(biāo)記 [16] [17] [18]。與M2型細(xì)胞相關(guān)的表面標(biāo)記還包括CD68。與標(biāo)記CD68相比,CD163對(duì)巨噬細(xì)胞更具選擇性,因此CD163可以作為M2型巨噬細(xì)胞的高度特異性標(biāo)記 [19]。

此外,精氨酸酶1(Arg1)[20]和DECTIN-1也是用于鑒定M2巨噬細(xì)胞的理想表型指標(biāo)。

研究還顯示,F(xiàn)IZZ1、Ym1和Ly6C [21] [22]也可以用作與M1或M2巨噬細(xì)胞亞群相關(guān)的表面標(biāo)記。

CD206

CD206,也稱為甘露糖受體1,是一種主要存在于巨噬細(xì)胞和未成熟樹(shù)突狀細(xì)胞中的C型凝集素。它促進(jìn)巨噬細(xì)胞的活化、抗原呈遞和免疫反應(yīng) [23]

CD163

CD163是高度特異的M2型腫瘤相關(guān)巨噬細(xì)胞標(biāo)記,主要在單核細(xì)胞和巨噬細(xì)胞表面表達(dá)。CD163屬于富含半胱氨酸的B家族類蛋白。它僅在單核巨噬細(xì)胞系中表達(dá)。

CD163不僅可以抵抗炎癥,還作為腫瘤相關(guān)巨噬細(xì)胞家族成員,在腫瘤增殖和轉(zhuǎn)移方面發(fā)揮重要作用。研究表明,CD163與乳腺癌、膀胱癌、肺癌、結(jié)直腸癌等惡性腫瘤密切相關(guān) [24]。CD163的浸潤(rùn)程度影響腫瘤的增殖、侵襲、轉(zhuǎn)移和預(yù)后。

● CD68

CD68參與巨噬細(xì)胞的吞噬活性。從內(nèi)體和溶酶體快速循環(huán)到質(zhì)膜上,這可能允許在選擇素底物或其他細(xì)胞上識(shí)別它。

最近的研究表明,僅在髓系細(xì)胞中表達(dá)MS4A4A,且在單核細(xì)胞衍生的M1和M2巨噬細(xì)胞中調(diào)節(jié)不同 [25],可以用作區(qū)分M1和M2巨噬細(xì)胞的標(biāo)記。

在M1或M2巨噬細(xì)胞中最顯著的基因中,CD38、Gpr18和Fpr2是新的M1標(biāo)記,而Egr2和C-MYC是M2標(biāo)記?;贑D38/Egr2的流式細(xì)胞術(shù)可以區(qū)分M1和M2巨噬細(xì)胞,并且在經(jīng)典的iNOS、精氨酸酶-1和CD206表型標(biāo)記方面具有優(yōu)勢(shì) [26]


 

5. 巨噬細(xì)胞與疾病

巨噬細(xì)胞參與組織中病原體的清除。當(dāng)激活時(shí),巨噬細(xì)胞可以吞噬和殺滅病原微生物,釋放促炎因子,并收集和激活淋巴細(xì)胞以誘導(dǎo)適應(yīng)性免疫反應(yīng)。

巨噬細(xì)胞功能異??赡軐?dǎo)致多種疾病。M1型巨噬細(xì)胞不僅與傳染病和炎癥性疾病有關(guān),還與動(dòng)脈硬化和胰島素抵抗等代謝性疾病有關(guān)。M2巨噬細(xì)胞也與多種疾病的發(fā)展有關(guān)。

 


 

6. 相關(guān)產(chǎn)品

● 華美生物精選重組蛋白

Recombinant Human Interleukin-17A(IL17A)
Code: CSB-BP624104HU(M)
CSB-BP624104HU(M) Active Verified CSB-BP624104HU(M) Purity Verified

Measured by its binding ability in a functional ELISA. Immobilized Human IL17A at 2 μg/ml can bind Anti-IL17A recombinant antibody (CSB-RA624104MA1HU), the EC50 is 1.818-2.170 ng/mL.

Recombinant Human Interleukin-6(IL6)
Code: CSB-YP011664HU
CSB-EP015308HUc7 Active Verified CSB-EP015308HUc7 Purity Verified

Measured by its binding ability in a functional ELISA. Immobilized Human IL6 at 2μg/mL can bind Anti-IL6 recombinant antibody (CSB-RA011664MA1HU),the EC50 is 35.80-41.82 ng/mL

● 華美生物精選抗體

CD163 Recombinant Monoclonal Antibody
CSB-RA801238A0HU
CSB-RA801238A0HU FC

Overlay histogram showing Raw264.7 cells stained with CSB-RA801238A0HU (red line) at 1:50.

CCL2 Antibody

CSB-PA05865A0Rb
CSB-PA05865A0Rb IHC

Immunohistochemistry of paraffin-embedded human breast cancer using CSB-PA05865A0Rb at dilution of 1:100

NOS2 Monoclonal Antibody
CSB-MA015943A0m
CSB-MA015943A0m FC

Overlay Peak curve showing HepG2 cells stained with CSB-MA015943A0m (red line) at 1:50.

IL13 Antibody

CSB-PA011590LA01HU
CSB-PA011590LA01HU IF

Immunofluorescent analysis of HepG2 cells using CSB-PA011590LA01HU at dilution of 1:100.

● 華美生物精選ELISA試劑盒

Rat TNF-α ELISA kit
CSB-E11987r
411篇文獻(xiàn)引用
CSB-E11987r 標(biāo)準(zhǔn)曲線

檢測(cè)范圍:
6.25 pg/mL-400 pg/mL

Mouse TNF-α ELISA KIT
CSB-E04741m
346篇文獻(xiàn)引用
CSB-E04741m 標(biāo)準(zhǔn)曲線

檢測(cè)范圍:
15.6 pg/ml-1000 pg/ml

Human TNF-α ELISA KIT
CSB-E04740h
163篇文獻(xiàn)引用
CSB-E04740h 標(biāo)準(zhǔn)曲線

檢測(cè)范圍:
7.8 pg/mL-500 pg/mL

Human IL-6 ELISA KIT
CSB-E04638h
202篇文獻(xiàn)引用
CSB-E04638h 標(biāo)準(zhǔn)曲線

檢測(cè)范圍:
7.8 pg/mL-500 pg/mL


參考文獻(xiàn):

[1] Germano G, Frapolli R, Belgiovine C, et al. Role of Macrophage Targeting in the Antitumor Activity of Trabectedin [J]. Cancer cell, 2013, 23(2): 249-262.

[2] Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation [J]. NATURE REVIEWS IMMUNOLOGY, 2008, 8(12): 958-969.

[3] Abramson S L, Gallin J I. IL-4 inhibits superoxide production by human mononuclear phagocytes [J]. Journal of Immunology, 1990, 144(2): 625-630.

[4] Biswas S K, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm [J]. Nature Immunology, 2010, 11(10): 889-896.

[5] Grohmann U, Belladonna M L, Vacca C, et al. Positive Regulatory Role of IL-12 in Macrophages and Modulation by IFN-γ [J]. The Journal of Immunology, 2001, 167(1): 221-227.

[6] Ginderachter J A V, Movahedi K, Ghassabeh G H, et al. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion [J]. 2006, 211(6-8): 0-501.

[7] Wynn T A, Chawla A, Pollard J W. Macrophage biology in development, homeostasis and disease [J]. Nature, 2013, 496(7446): 445-455.

[8] Xu J, Chi F, Tsukamoto H. Notch signaling and M1 macrophage activation in obesity-alcohol synergism [J]. Clinics and Research in Hepatology and Gastroenterology, 2015, 39: S24-S28.

[9] Saliba D, Heger A, Eames H, et al. IRF5: RelA Interaction Targets Inflammatory Genes in Macrophages [J]. Cell Reports, 2014, 8(5): 1308-1317.

[10] Lu G, Zhang R, Geng S, et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization [J]. Nature Communications, 2015, 6: 6676.

[11] Hall C J, Boyle R H, Astin J W, et al. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production [J]. Cell Metabolism, 2013, 18(2): 265-278.

[12] Zizzo G, Cohen P L. IL-17 Stimulates Differentiation of Human Anti-Inflammatory Macrophages and Phagocytosis of Apoptotic Neutrophils in Response to IL-10 and Glucocorticoids [J]. The Journal of Immunology, 2013, 190(10): 5237-5246.

[13] Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization [J]. Proceedings of the National Academy of Sciences, 2012, 109(24): 9517-9522.

[14] Xu F, Kang Y, Zhang H, et al. Akt1-Mediated Regulation of Macrophage Polarization in a Murine Model of Staphylococcus aureus Pulmonary Infection [J]. Journal of Infectious Diseases, 2013, 208(3): 528-538.

[15] Macgarvey N C, Suliman H B, Bartz R R, et al. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis [J]. American Journal of Respiratory & Critical Care Medicine, 2012, 185(8): 851-61.

[16] Tedescoa S, Bolegoa C, Tonioloa A, et al. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages [J]. Immunobiology, 2015, 220(5): 545-554.

[17] Rebelo S P, Pinto C, Martins T R, et al. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment [J]. Biomaterials, 2018.

[18] Wang S, Zhang J, Sui L, et al. Antibiotics induce polarization of pleural macrophages to M2-like phenotype in patients with tuberculous pleuritis [J]. Scientific Reports, 2017, 7(1).

[19] Shabo I, Svanvik J. Expression of macrophage antigens by tumor cells [J]. Oxygen Transport to Tissue XXXIII, 2011, 714: 141-150.

[20] Stoermer K A, Burrack A, Oko L, et al. Genetic Ablation of Arginase 1 in Macrophages and Neutrophils Enhances Clearance of an Arthritogenic Alphavirus [J]. The Journal of Immunology, 2012, 189(8): 4047-4059.

[21] Raes G, Baetselier P D, Wim No?l, et al. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages [J]. Journal of Leukocyte Biology, 2002, 71(4): 597.

[22] Dragomir A C D, Sun R, Choi H, et al. Role of Galectin-3 in Classical and Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication [J]. The Journal of Immunology, 2012, 189(12): 5934-5941.

[23] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity [J]. NATURE REVIEWS IMMUNOLOGY, 2011, 11(11): 750-761.

[24] Shabo I, Olsson H, Elkarim R, et al. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer [J]. Cancer Microenvironment, 2014, 7(1-2): 61-69.

[25] Sanyal R, Polyak M J, Zuccolo J, et al. MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells [J]. Immunology and Cell Biology, 2017.

[26] Jablonski K A, Amici S A, Webb L M, et al. Novel Markers to Delineate Murine M1 and M2 Macrophages [J]. PLOS ONE, 2015, 10(12): e0145342-.